
www.manaraa.com

Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2013

Distinct random sampling from a distributed
stream
Yung-Yu Chung
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Computer Engineering Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Chung, Yung-Yu, "Distinct random sampling from a distributed stream" (2013). Graduate Theses and Dissertations. 13863.
https://lib.dr.iastate.edu/etd/13863

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F13863&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F13863&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F13863&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F13863&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F13863&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F13863&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=lib.dr.iastate.edu%2Fetd%2F13863&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/13863?utm_source=lib.dr.iastate.edu%2Fetd%2F13863&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

Distinct random sampling from a distributed stream

by

Yung-Yu Chung

A thesis submitted to graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Computer Engineering

Program of Study Committee:

Srikanta Tirthapura, Major Professor

Suraj Kothari

Pavan Aduri

Tien N. Nguyen

Iowa State University

Ames, Iowa

2013

Copyright c© Yung-Yu Chung, 2013. All rights reserved.

www.manaraa.com

ii

TABLE OF CONTENTS

LIST OF TABLES . iii

LIST OF FIGURES . iv

ABSTRACT . v

CHAPTER 1. Introduction . 1

CHAPTER 2. Model . 4

CHAPTER 3. Infinite Window . 6

3.1 Infinite Window: Analysis . 8

CHAPTER 4. Sliding Windows . 14

4.1 Algorithm . 14

4.2 Sliding Window Analysis . 16

CHAPTER 5. Experiments . 19

5.1 Impact of Data Distribution . 19

5.2 Comparison with Other Algorithms . 20

5.3 Sliding Windows . 21

CHAPTER 6. Conclusion . 33

BIBLIOGRAPHY . 34

www.manaraa.com

iii

LIST OF TABLES

Table 5.1 The number of elements and distinct elements in OC48 IP and Enron

e-mail datasets . 19

www.manaraa.com

iv

LIST OF FIGURES

Figure 5.1 The number of messages under three different methods of data distribu-

tion, “flooding”, “random”, and “round robin”. The curves for round-

robin and random are nearly identical, so they cannot be differentiated

in this picture. 23

Figure 5.2 The number of messages as a function of the sample size s. 24

Figure 5.3 Number of messages as function of the number of sites k. 25

Figure 5.4 Comparison between number of messages sent by Algorithm Broadcast

and our proposed method. 26

Figure 5.5 The number of messages sent by Algorithm Broadcast and our proposed

method for different sample sizes. 27

Figure 5.6 Comparison between Algorithm Broadcast and our proposed method

for different dominate rates. 28

Figure 5.7 Sliding Windows: Per site memory consumption versus Window Size . 29

Figure 5.8 Sliding Windows: Number of Messages versus Window Size 30

Figure 5.9 Sliding Windows: per site memory consumption as a function of number

of sites . 31

Figure 5.10 Sliding Windows: communication complexity as a function of number

of sites . 32

www.manaraa.com

v

ABSTRACT

We consider continuous maintenance of a random sample of distinct elements from a massive

data stream, whose input elements are observed at multiple distributed sites that communicate

via a central coordinator. At any point, when a query is received at the coordinator, it responds

with a random sample from the set of all distinct elements observed at the different sites so

far. We present the first algorithms for distinct random sampling on distributed streams. We

also present a lower bound on the expected number of messages that must be transmitted by

any distributed algorithm, showing that our algorithm is message optimal to within a factor of

four. We present extensions to sliding windows, and detailed experimental results showing the

performance of our algorithm on real-world data sets.

www.manaraa.com

1

CHAPTER 1. Introduction

Random sampling is a flexible and general method for constructing a synopsis of a data

stream. A random sample can be used to answer aggregate queries approximately, with prov-

able, but probabilistic guarantees on the quality of approximation.

We consider the maintenance of a distinct sample, a random sample of all distinct elements

within the stream. A distinct sample has the property that the probability of an element’s

inclusion in the sample is independent of the frequency of the element in the population,

this property is useful in computing certain aggregates on data. Such a sample can provide

estimates for a query pertaining to the set of distinct elements within the stream. For instance,

a common query of such a form is simply the number of distinct elements in the stream. A

distinct sample can go beyond answering simple distinct count queries, by answering queries

about subsets of elements in the stream, for instance, “how many distinct visitors have used a

web service, who come from a particular country?”, or “what is the average age of the distinct

users of this website”? In general, such a sample can be used in determining an aggregate on

the set of distinct elements in the stream that satisfy a given predicate, where the predicate

itself is supplied only at query time.

We consider the maintenance of a distinct sample over a distributed stream, whose ele-

ments are not all observed at the same processor. We adopt the continuous distributed moni-

toring model Cormode (2013); Cormode et al. (2011, 2012); Tirthapura and Woodruff (2011);

Woodruff and Zhang (2012), where a “coordinator” node is required to continuously maintain

an aggregate function over the union of all streams observed at the different distributed sites.

For distributed processing of large data sets, the bottleneck is often the network bandwidth

rather than processing speed or memory, and hence the focus is usually on minimizing the

communication complexity of the streaming algorithm.

www.manaraa.com

2

There has been a long line of research on random sampling in the streaming model, starting

from the popular reservoir sampling algorithm, due to Waterman (see Algorithm R from Vitter

(1985)), which has been known since the 1960s. This includes work on speeding up reservoir

sampling Vitter (1985), weighted reservoir sampling Efraimidis and Spirakis (2006, 2008), sam-

pling over a sliding window and stream evolution Aggarwal (2006); Babcock et al. (2002);

Braverman et al. (2012); Gemulla and Lehner (2008), and distributed random sampling Cor-

mode et al. (2012); Tirthapura and Woodruff (2011). While there is prior work on distinct

sampling over a single data stream Frahling et al. (2005); Ganguly et al. (2004); Gibbons

(2001); Gibbons and Tirthapura (2001), none of the above consider distinct sampling over a

distributed stream.

Our Contributions We present the first distributed algorithms for maintaining a distinct

sample in the continuous distributed model. We also present a lower bound on the message

complexity of any algorithm for this problem, showing that our algorithm has optimal message

complexity to within constant factors. Let k denote the number of distributed sites, s the

desired sample size. The expected message complexity of maintaining a distinct sample when a

total of d elements are observed is Θ
(
ks ln de

s

)
.

We show how our algorithm can be extended to support time-based sliding windows over

distributed streams. We then present detailed experimental results evaluating the performance

of our algorithms over real-world data sets.

It is interesting to compare the message complexity of distributed distinct sampling (DDS)

to that distributed random sampling (DRS) from the set of all elements observed by the sys-

tem, and where element frequency does matter. From previous work Cormode et al. (2012);

Tirthapura and Woodruff (2011), we know that the message complexity of DRS for n total

elements and k sites is Θ
(
k log(n/s)
log(k/s)

)
if s < k/8 and Θ(s log(n/s)) if s ≥ k/8. Note that these

expressions are tight (up to constant factors), due to the presence of matching lower bounds.

In case of infinite windows, the cost of DDS increases as the product of k, the number of

sites, and s, the sample size, while the cost of DRS increases (approximately) as max{k, s}.

www.manaraa.com

3

Thus surprisingly, the message cost of DDS is inherently larger than that of DRS if log(d/s) is

comparable to log(n/s).

With DRS, when n elements are received in the system, the probability of a new element

being selected into the sample decreases as s/n. In case of DDS, the probability of a new

element being selected into the sample decreases as s/d, where d is the number of distinct

elements in the system, but due to the possibility of the same element appearing at different

sites, more messages may be communicated between the sites and the coordinator. Our analysis

shows that greater coordination is inherently necessary for DDS than for DRS.

Related Work

There is a growing literature on algorithms for continuous distributed monitoring including

the basic countdown problem Cormode et al. (2008) frequency moments Cormode et al. (2008);

Woodruff and Zhang (2012), entropy Arackaparambil et al. (2009), heavy-hitters and quan-

tiles Yi and Zhang (2013), and often, matching lower bounds Woodruff and Zhang (2012). For

a recent survey on results in this model, see Cormode (2013). A survey of sampling on streams

appears in Lahiri and Tirthapura (2009).

A geometric approach to distributed monitoring is presented by Giatrakos et al. (2012);

Sharfman et al. (2007). This approach breaks down the distributed monitoring of a function

into monitoring several local properties. We are not aware of a specialization of this geometric

technique to the problem of random sampling. A related model of distributed streams was

considered in Gibbons and Tirthapura (2001, 2002). In this model, the coordinator was not

required to continuously maintain an aggregate, but instead, when the query was posed to the

coordinator, the sites would be contacted and the query result would be constructed. In their

model, the coordinator could be said to be “reactive”, whereas in the model considered in this

paper, the coordinator is “pro-active”.

Roadmap: We first present the model and problem definition in Section 2, the algorithm and

lower bound for the infinite window case in Section 3, the algorithm and lower bound for the

sliding window case in Section 4, and an experimental evaluation in Section 5.

www.manaraa.com

4

CHAPTER 2. Model

We consider a system with k sites, numbered from 1 to k. Each site i monitors a local

stream of elements, which are not all necessarily distinct. There is an integer time associated

with each observation, and time is non-decreasing within a stream. At time t, let Si(t) denote

the stream observed by site i so far, and let S(t) = ∪ki=1Si(t) denote the stream observed by

the system so far. Let D(t) denote the set of distinct elements in S(t), n(t) the number of

elements in S(t), and d(t) the number of distinct elements in S(t).

There is a coordinator node, different from the other k sites, to whom all queries are posed.

The different sites as well as the coordinator are assumed to be synchronized in time, and we

ignore message delay from the site to the coordinator. These assumptions, which have also

been used in previous works in the continuous distributed streaming model Cormode et al.

(2011, 2010); Tirthapura and Woodruff (2011), allow us to focus on communication efficiency.

We consider two versions, based on the scope of the data that the query addresses. In the

infinite window case, at every time instant t, the coordinator must maintain a random sample

of size min{s, d} from D(t). In the sliding window case, we are given a window size w as a

parameter, and the user is interested in all elements that have arrived in the most recent w

time intervals. In particular, let Swi (t) denote the stream that has arrived at site i at times

t − w + 1, t − w + 2, . . . , t, and let Sw(t) = ∪ki=1Si(t). Let Dw(t) denote the set of distinct

elements in in Sw(t). The goal is for the coordinator to maintain at all times t, a random

sample of size min{s, d} from the elements in Dw(t).

Our measure of performance is the total number of messages sent between the coordinator

and the sites, and we aim to minimize this number. Since each message in our algorithm is of a

small size, this is also a measure of the number of bytes transmitted, in our case. The size 1 of

1The message size is constant, assuming that each stream element can be stored in a constant number of

www.manaraa.com

5

local data stream Si, the order of arrival, the number of distinct elements in the local stream,

and the interleaving of the stream at different sites, can all be arbitrary, and the algorithm

cannot make any assumption about these.

bytes.

www.manaraa.com

6

CHAPTER 3. Infinite Window

We first consider the case of infinite windows, when the sample has to be chosen from the

set of all distinct elements seen so far in the stream. Let h : U → [0, 1] be a hash function

that assigns a real number in the range [0, 1] to each element in U . For different inputs, it is

assumed that the outputs of h are mutually independent random variables. For set S, let h(S)

denote {h(x)|x ∈ S}. Note that for any time t, h(S(t)) = h(D(S(t))). The basic sampling

strategy is as follows. The distinct sample at time t is the set of elements from S(t) that yield

the s smallest elements in h(S(t)).

It is clear that the above yields a distinct sample from S(t). To see this, Take any subset

T ⊆ D(S(t)) of size s; the probability that the elements in T will yield the s smallest values in

h(D(S(t))) is exactly the probability that in a random permutation of h(D(S(t))), the elements

in T are ordered before the rest, which is 1/
(|D(t)|

s

)
.

Our distributed algorithm for maintaining the above sample is as follows. Let u(t) denote

the value of the sth smallest element in h(S(t)). The coordinator always has the current value

of u(t). Each site i maintains a state variable ui(t), which is its local view of u(t). ui(t)

is initialized to 1 and is updated as follows. Whenever site i observes an item e such that

h(e) < ui(t), e and h(e) are sent to the coordinator, who updates u(t). If h(e) indeed changed

the value of u(t), then e is selected into the sample at the coordinator, replacing a current

element in the sample (unless fewer than s distinct elements have been seen so far). In turn,

the coordinator sends a message back to i to refresh the value of ui(t). The algorithm at site i

is presented in Algorithm 1 and at the coordinator is in Algorithm 2.

www.manaraa.com

7

Algorithm 1: Infinite Window: Algorithm at site i

1 Initialization: Receive hash function h from the coordinator; ui ← 1

2 repeat

3 When site receives element e: if h(e) < ui then

4 Send e to the Coordinator

5 Receive u′ from the Coordinator

6 ui ← u′

7 end

8 until Forever

Algorithm 2: Infinite Window: Algorithm at the Coordinator

/* P is the random sample, and variable u has the current value of u(t).

*/

1 Initialization: P ← φ, u← 1

2 repeat

3 if receive e from site i then

4 if h(e) < u then

5 If e 6∈ P , then insert e into P

6 if |P | > s then

7 Discard element e′ from P with the largest value of h(e′)

8 Update u← max {h(f)|f ∈ P}
9 end

10 end

11 Send u to site i;

12 end

13 if a query for a random sample arrives then

14 Send P

15 end

16 until Forever

www.manaraa.com

8

Proof of Correctness

Lemma 1. When queried at time t, the coordinator returns a random sample of size min{s, d}

selected without replacement from D(t).

Proof. First, note that the variable ui tracks ui(t) at every time instant t. Further, for each site,

ui ≥ u, since each time ui is changed, it is set to u. Since u is non-increasing, it is always true

that ui ≥ u. Assuming that the hash outputs for different elements are distinct, we can verify

that the value of u is equal to the `th smallest hash value seen so far, where ` = min{s, d}.

Further we can verify that P contains those elements with the ` smallest hash values. This

constitutes a random sample of size s chosen without replacement from D(t).

3.1 Infinite Window: Analysis

We present an analysis of the message complexity of our algorithm. In Section 3.1.0.1, we

present an upper bound on the message complexity of our algorithm and a lower bound is

derived in Section 3.1.0.2.

3.1.0.1 Upper Bound

Consider the execution of the algorithm until the end of time step t. Let d = |D(t)| be the

total number of distinct elements that were observed in the stream. Let di denote the total

number of distinct elements in stream Si(t) observed at site i. Clearly, di ≤ d. Let Yi denote

the total number of messages that are sent and received by node i (note that the number of

messages sent by site i equals the number of messages received). Let Y denote the total number

of messages in the system. In the following, when the context is clear, we use Si to mean Si(t),

Di to mean Di(t), and so on.

We first observe that for any e ∈ Si, site i does not incur any communication cost for

repeated occurrences of e; h(e) cannot be less than ui for such repeat occurrences. For j =

1 . . . di, let eji be the jth new distinct element in the local stream Si, for example, e2i is the

second distinct element in Si, and so on. For j = 1 . . . di, let Y j
i be a random variable equal

to 1 if site i communicated with the coordinator upon receiving eji , and 0 otherwise. Since

www.manaraa.com

9

each communication from site i to the coordinator also results in a return message from the

coordinator, we have:

Yi = 2

di∑
j=1

Y j
i (3.1)

Lemma 2. For site i, and j = 1 . . . di, Pr
[
Y j
i = 1

]
≤ s/j, if j > s.

Proof. Let Zj
i denote that event that h(eji) is among the s smallest elements in {h(eqi)|q =

1 . . . j}. Note that if Y j
i = 1, then Zj

i must be true. Note that the converse is not necessarily

true; it is possible that Zj
i is true, but Y j

i = 0, for example, eji may have already been observed

by a site other than i, and its value may have been incorporated into u, and hence into ui. It

is easy to see that Pr
[
Zj
i

]
= s

j . Since Pr
[
Y j
i = 1

]
≤ Pr

[
Zj
i

]
, the lemma follows.

Lemma 3.

E [Yi] ≤ 2s+ 2s (Hdi −Hs)

Proof. Using Equation 3.1 and linearity of expectation:

E [Yi] = 2

di∑
j=1

E
[
Y j
i

]
= 2

di∑
j=1

Pr
[
Y j
i = 1

]

= 2
s∑

j=1

Pr
[
Y j
i = 1

]
+ 2

di∑
j=s+1

Pr
[
Y j
i = 1

]

≤ 2s+ 2

di∑
j=s+1

s

j
= 2s+ 2s (Hdi −Hs)

where we have used Lemma 2.

Lemma 4. Let Y denote the number of messages transmitted by the distributed algorithm

during an execution when d distinct elements are observed overall.

E [Y] ≤ 2ks+ 2ks (Hd −Hs) ≈ 2ks

(
1 + ln

(
d

s

))
Proof. The proof follows from the observation Y = 2

∑k
i=1 Yi, combined with Lemma 3, and

the observation di ≤ d.

www.manaraa.com

10

We remark that using Lemma 3, it is possible to get a tighter upper bound for E [Y] in

cases when the numbers of distinct elements observed at individual sites is much smaller than

the number of distinct elements overall.

Observation 1.

E [Y] ≤ 2ks+ 2s

k∑
i=1

(Hdi −Hs) ≈ 2ks+ 2s

k∑
i=1

ln

(
di
s

)
The following theorem summarizes the performance of the algorithm for infinite windows.

Theorem 1. Let d, s, and k respectively denote the total number of distinct elements in the

distributed stream, sample size, and the number of sites. There is an algorithm that continuously

maintains a distinct sample of a distributed stream, whose expected total number of messages is

O(ks ln
(
de
s

)
), memory consumption per site is O(1), memory consumption at the coordinator

is O(s), and processing time per element is O(1).

3.1.0.2 Lower Bound

Given any distributed algorithm A that continuously maintains a distinct sample of the

stream of size s, we construct an input which causes A to send at least a certain minimum

number of messages, in expectation. Suppose that the elements were all chosen from the set

[m] = {1, 2, . . . ,m} for m >> k.

In showing that there must be a minimum amount of communication in a distributed

protocol, we have to first deal with the fact that in a synchronous distributed system such as

the one we are assuming, two processors can communicate without actually sending a message;

for example, the absence of a message from a site in a given round already conveys information

to the coordinator, if for a different input in the same round, the site did send a message to

the coordinator.

Lemma 5. For any algorithm A, and any site i = 1 . . . k, there cannot be more than one

element ei ∈ [m] such that upon receiving a stream with only ei, site i sends a message with

probability less than 0.25.

www.manaraa.com

11

Proof. Suppose that there were two such elements ei and e′i such that upon observing either

element, site i sent a message with probability less than 0.25, according to algorithm A. Con-

sider two inputs I1 and I2, which did not assign any elements to sites 2 till k, and assigned ei

and e′i respectively to site 1. With probability at least 0.5, site 1 will not send a message to

the coordinator for either input ei or e′i.

Thus with probability at least 0.5, the coordinator’s view of site 1 is the same for both

inputs. Similarly, the input streams at all other nodes are identical in I1 and I2, leading to

an identical distribution of the other sites, in the coordinator’s view. However, with I1, the

random sample must be ei, and with I2, the random sample must be e′i. With probability at

least 0.5, the coordinator must make an error in the random sample, which is a contradiction

since the coordinator must have a random sample at all times.

Lemma 6. For any algorithm A, there is an input I1 that sends exactly one element, e1, to

each of the k sites, and the expected number of messages sent is at least k
4 .

Proof. From Lemma 5, for each site i, there exists an element ei such that if site i received an

element e 6= ei, then the expected number of messages sent by site i is at least 1/4. Choose an

arbitrary element e1 ∈ [m]−∪ki=1{ei}. The input I1 is constructed by assigning e1 to each site

i = 1 . . . k. Each site i sends an expected at least 1/4 messages on this input, and the expected

total number of messages is at least k
4 . Note that we have used the fact m >> k.

Lemma 7. Suppose a set D of distinct elements of size d have already been observed by the

system so far, after some rounds of computation. For any algorithm A, and any site i = 1 . . . k,

there is an element eDi such that upon receiving any element e ∈ [m]−eDi −D in the next round,

site i will send a message to the coordinator with probability at least s
2(d+1) .

Proof. Suppose that the set D has already been observed by the system so far. Suppose that

there were two distinct elements ei, e
′
i ∈ [m]−D such that upon ei, the probability that i sent

a message to the coordinator was less than s
2(d+1) , and also upon e′i, the probability that i sent

a message to the coordinator was less than s
2(d+1) .

Consider the following two inputs in the next round. In one input I1, site i is given ei and

the other sites do not receive any element. In the other input, site i is given e′i and the other

www.manaraa.com

12

sites do not receive an element. In I1, at the end of this round, there is a probability of s
d+1

that ei belongs to the random sample. In I2, at the end of this round, there is a probability of

s
d+1 that e′i belongs to the random sample. Thus, with probability at least s

d+1 , the sample at

the coordinator after observing I1 is different from the sample after observing I2.

However, in this round, the coordinator observes a change in execution between I1 or I2

only if either (1) site i sends a message to the coordinator in I1, or (2) site i sends a message

tot he coordinator in I2. The probability that one of the above events happen is less than s
d+1 ;

and further the behavior of the other sites has an identical distribution in both inputs, since

they did not receive any element.

Thus, we have that the contents of the random sample at the end of the round are different

with probability at least s
d+1 , but the probability that the messages observed by the coordinator

are different is less than s
d+1 . This leads to a non-zero probability that the random sample at

the coordinator is incorrect at the end of this round, and hence a contradiction.

Hence, there can be at most one element ei such that upon receiving an element e ∈

[m]− ei−D, the probability of sending a message to the coordinator is at least s
2(d+1) , and the

lemma follows.

Lemma 8. Suppose the set of distinct elements observed so far is D, and let d be the size of

D, and d ≥ s. For any algorithm A, there exists another round of input I(D) such that after

observing I(D), the sites will send at least an expected ks
2(d+1) elements to the coordinator.

Proof. The input I(D) is constructed as follows. Let e be any element such that e 6∈ D ∪(
∪ki=1{eDi }

)
. Element e is given to every site in this round. Using Lemma 7, we get that each

site i = 1 . . . k will send a message to the coordinator with probability at least s
2(d+1) . The

lemma follows.

Lemma 9. For any algorithm A, there exists an input distributed stream, IA with d distinct

elements such that the expected number of messages sent by the algorithm upon receiving IA is

at least ks
2 (Hd −Hs + 1) ≈ ks

2 ln
(
de
s

)
.

Proof. Input IA is constructed as follows. Let D0 = φ. The input in the first round is I(D0).

www.manaraa.com

13

For i ≥ 0, let the set of all distinct elements observed till (and including) round i be Di. Note

that the size of Di is exactly i. For i = 0 . . . (d− 1), the input in round i+ 1 is I(Di).

From Lemma 8, in round i > s, the expected number of messages sent to the coordinator

is at least ks
2(i+1) . Summing this over all rounds s+ 1, . . . , d, we get the number of messages to

be at least ks(Hd−Hs)
2 .

For rounds 1 till s, similar methods yield that the expected number of messages sent in each

round must be at least k
2 , for the above input. Thus the expected total number of messages

sent by this algorithm should be at least ks
2 (Hd −Hs + 1).

Sampling With Replacement Thus far, we have considered distinct sampling without

replacement. In sampling with replacement, the s different samples are all chosen independently

and randomly from the set of distinct elements observed so far, D(t).

One solution to distinct sampling with replacement is to repeat s parallel copies of the single

element sampling algorithm, each copy using a different hash function. The correctness of this

scheme is trivial, and the message cost is s times the cost of a single element sampling algorithm,

which is O(sk log de). Comparing with the cost of distinct sampling without replacement

O(ks log(de/s)), the message cost of this algorithm for sampling with replacement is close to

the message cost of sampling without replacement.

We also note there is an easy reduction from distinct sampling without replacement to

distinct sampling with replacement; from a distinct sample with replacement of size slightly

greater than s; it is easy to prove that the result is indeed a distinct sample without replacement

from the original dataset. Thus, the lower bound of O(ks ln(des)) applies to both sampling with

and without replacement, and this simple method leads to an algorithm for sampling with

replacement with near-optimal message complexity.

www.manaraa.com

14

CHAPTER 4. Sliding Windows

We now consider the sliding windows version of the problem. Let k denote the number of

sites, as before, and we assume that time is divided into “slots” where the slots are numbered

consecutively in an increasing sequence. At each slot t, a site may receive zero, one, or more

elements. It is assumed that time is synchronized across the sites so that when site 1 is observing

elements in slot t, other sites are also observing elements in the same slot. Given a window

size w > 0, the goal is: When a query is issued to the coordinator at slot t, it returns a random

sample chosen from all distinct elements observed is slots (t − w + 1) till t, both endpoints

inclusive. We use the terms “slot” and “time” interchangeably in the following discussion.

4.1 Algorithm

For simplicity, we present the algorithm for the case s = 1; the extension to larger sample

sizes is straightforward. At time t, let Si(t, w) denote the elements that have arrived in slots

(t − w + 1) till t at site i. Let S(t, w) denote the (multiset) union of Si(t, w), i = 1 . . . k. Let

Di(t, w) denote the set of distinct elements in Si(t, w), and D(t, w) the set of distinct elements

in S(t). For a set of elements E, let h(E) = {h(e)|e ∈ E}. The high-level algorithm idea

is similar to the infinite window case: choose the element with the smallest hash values from

among all elements in D(t, w). Let u(t, w) denote the smallest hash value from h(D(t, w)).

The problem with implementing the sliding windows scenario, when compared with the infinite

window scenario, is that the value of u(t, w) is not monotonically decreasing. As elements

expire from the window, the value of u(t, w) may increase, and keeping track of this needs

additional communication.

www.manaraa.com

15

Intuition An algorithm is as follows. Each site i, at all times, keeps track of the element

with the smallest hash value from Di(t, w). Whenever this changes, the coordinator is informed

of the new distinct sample from Di(t, w). Since the coordinator at all times has the element with

the smallest hash value from each site, it can maintain the element with the globally smallest

hash value from D(t, w). Any changes to this element are communicated to the coordinator by

the site. The message complexity of this algorithm depends on how often the local sample at

each site i changes.

Note that the above algorithm used no feedback from the coordinator to the site. We can

potentially reduce the communication cost of this algorithm in the following manner. Similar

to the case of infinite window, the coordinator maintains a variable u, which has the current

smallest hash value in D(t, w). When it replies back to a site, the coordinator conveys the

current value of u to the site. However, note that u may actually increase at the coordinator,

due to elements expiring from the window, and this needs also to be conveyed to the sites.

One possibility is: each time the value of u increases, the coordinator broadcasts the new

value of u to all nodes – note such an action was not necessary in the infinite window case

since in that case, the local view of u at a site was never less than the global value of u. With

such a broadcast whenever u increases at the coordinator, we can make sure that the sites

communicate in a “safe” manner; i.e. messages that can potentially change the state of the

coordinator are sent to the coordinator.

But such a broadcast can be expensive, and we instead use an alternate method as follows.

The coordinator replies back with the value of u to a site only when the site communicates with

the coordinator. With the value of u, the coordinator also sends a time stamp, which is the

time at which the sample expires. If ui (site i’s local view of u) expires, then site i falls back to

a view of u that is gotten by observing solely the local stream Di(t, w). This ensures that the

value of ui is often synchronized with u at the coordinator; and when it is not synchronized

with the coordinator, ui ≥ u.

There is one other issue, that of maintaining the locally smallest element within Di(t, w).

It is known that in general, maintaining the smallest element within a sliding window requires

space linear in the window size in the worst case Datar et al. (2002). However, we do not

www.manaraa.com

16

need to maintain the minima over arbitrary numbers, but need to do so over random numbers.

Hence, we can use the idea from priority sampling over sliding windows Babcock et al. (2002)

to significantly reduce the space consumption at each site.

For elements e, e′ and time t, t′, we say that tuple (e, t) dominates tuple (e′, t′) at site i if

t > t′ and h(e) < h(e′). Let τi(e) denote the most recent time when e was observed at site i.

For elements e, e′, we say e dominates e′ at site i if (e, τi(e)) dominates (e′, τi(e
′)). Each site i

has a data structure Ti consisting of all elements that could potentially be included within the

random sample of distinct elements either now, or in the future. An efficient data structure for

Ti can be a treap Seidel and Aragon (1996).

The algorithm at the site is presented in Algorithm 3, and at the coordinator in Algorithm 4.

4.2 Sliding Window Analysis

Per-site Space Complexity We show that the expected space complexity at site i at

time t is O(log |Di(t, w)|).

Lemma 10. For site i, the expected size of Ti at time t is no more than HMi, where Mi is the

size of Di(t, w), and Hj is the jth Harmonic number.

Proof. This proof is along the lines of Babcock et al. (2002). Ti only contains those tuples

(e, t) that are not dominated by another tuple (e′, t′) at stream Si. Let Mi denote the size

of Di(t, w). Let e1, e2, . . . , eMi be the distinct elements observed by site i within the current

window, in the order of their time of expiry; i.e. e1 expires first, followed by e2, and so on. e1

is present in Ti only if h(e1) < h(ej) for each j = 2 . . .Mi. Thus, the probability of e1 being

present in Ti is 1/Mi. Similarly, the probability of e2 being present in Ti is 1/(Mi − 1) and so

on. Proceeding thus, we get that the the expected size of Ti is no more than HMi ≤ HM .

Using Chernoff bounds, it is possible to also provide a high probability bound on the space

consumption at each site i. We omit the details here.

Message Complexity At time t at site i, for j = (t − w + 1) . . . t, let dji (t) denote the

number of elements in Di(t, w) whose most recent appearance in this window was at time j.

www.manaraa.com

17

Algorithm 3: Sliding Window: sampling algorithm at site i.

/* (ei, ui, ti) is the distinct sample from the current window at site i. ei
is the element, ui = h(ei), and ti is the timestamp at which ei expires.

*/

/* Ti is the set of all tuples that have a chance of getting selected into

the sample in the future. */

1 Initialization: ei ← φ, ui ← 1, Ti ← ∅
2 repeat

3 if Receive an element e at time t then

4 if e ∈ Ti then

5 update timestamp of e in Ti to (t+ w)

6 end

7 else

8 Insert (e, t+ w) into Ti
9 end

10 Delete all elements (e′, t′) from Ti that have expired, i.e. t′ < t.

11 Delete all elements (e′, t′) from Ti that are dominated by another element within

Ti.

12 if h(e) < ui then

13 Send (e, t) to the coordinator

14 end

15 end

16 if Receive (e, t) from the coordinator then

17 Set (ei, ui, ti)← (e, h(e), t)

18 Insert (e, t) into Ti
19 As in the previous step, delete all elements (e′, t′) from Ti that have expired. And

delete all elements (e′, t′) from Ti that are dominated by another element from Ti.

20 end

21 if ti < t then

22 Remove expired elements from Ti
23 Select (e, t) from Ti with the smallest value of h(e), and set

(ei, ui, ti)← (e, h(e), t)

24 Send (e, t) to the coordinator

25 end

26 until Forever

www.manaraa.com

18

Algorithm 4: Sliding Window: Sampling Algorithm at the coordinator

/* e∗ is the distinct sample, and t∗ is the time at which this sample

expires. u∗ = h(e∗). */

1 repeat

2 if Receive (e′, t′) from site i at time t then

3 if (u∗ > h(e′)) or (t∗ < t) then

4 (e∗, u∗, t∗)← (e′, h(e′), t′)

5 end

6 Send (e∗, t∗) to site i.

7 end

8 if A query arrives for a sample from D(t, w) then

9 Return e∗.

10 end

11 until Forever

Let Mi(t) denote the size of Di(t, w). We note that
∑t

j=t−w+1 d
j
i (t) = Mi(t).

Let Yi(t) be a random variable equal to 1 is site i communicated with the coordinator at time

t, and 0 otherwise. We note that Yi(t) = 1 if (1) Event 1: the current sample expires at time t,

or if (2) Event 2:an incoming distinct element is sampled. Let bi(t) = max(t−w+1)≤t′≤t d
j
i (t
′).

Lemma 11.

Pr [Yi(t) = 1] ≤ bi(t)

Mi(t, w)
+

bi(t− 1)

Mi(t− 1, w)

Proof. At time step t, the likelihood that the expiring element is the the chosen sample is

equal to
dt−w
i (t−1)

Mi(t−1,w) ≤
bi(t−1)

Mi(t−1,w) . Similarly, the probability that an incoming element is chosen

into the sample is
dti(t)

Mi(t,w) ≤
bi(t)

Mi(t,w) . The required probability is the sum of the above two

probabilities.

Lemma 12. The expected total number of messages sent in the system by the algorithm for

maintaining a distinct random sample of a single element over a time-based sliding window of

size w, with k sites and T timesteps is O(kT b
M) where b is the maximum over all sites i and

timesteps t of bi(t) and M is the minimum over all sites i and timesteps t of Mi(t).

Proof. Clearly in each timestep at each site, the expected number of messages is bounded by

2b/M using Lemma 11. Multiplying by the total number of sites and timesteps we arrive at

the above expression.

www.manaraa.com

19

CHAPTER 5. Experiments

We present an experimental evaluation of our proposed algorithms. We implemented the

algorithms in Java, using the MurmurHash Holub hash function. We used two datasets. The

first is an OC48 Internet Traces Dataset CAIDA OC48 Trace Project (2006), which has anony-

mous traffic traces taken at a US west coast OC48 peering link for a large ISP in 2002 and

2003. We consider the concatenation of the sender’s IP address and the receiver’s IP address

to generate an element. The other is the Enron Email Dataset CALO Project (2009), where

an element is again constructed by concatenating the sender’s email address and the receiver’s

email address. A summary the data is shown in Table 5.1. Each data point presented is the

average of 50 independent runs.

Elements # Distinct

OC48 42,268,510 4,337,768

Enron 1,557,491 374,330

Table 5.1 The number of elements and distinct elements in OC48 IP and Enron e-mail datasets

Our theoretical analysis was for the worst case, when the input data can be distributed in an

arbitrary manner by the adversary. In Section 5.1, we evaluate the impact of data distribution

on the performance of the algorithm. In Section 5.2, we compare the performance of our method

with an alternate, fairly natural algorithm. In Section 5.3, we evaluate the performance of the

sliding window version of our algorithm.

5.1 Impact of Data Distribution

We examine the performance of our algorithm under different distribution methods. In the

first method, called “flooding”, each incoming element is assigned to every site in the system.

www.manaraa.com

20

In the second method, called “random”, an incoming element is sent to a single site, chosen

uniformly at random. In the third method, “round-robin”, each element is sent to a single

site, and the elements are assigned to sites in a round-robin manner, i.e. the j-th element is

monitored by site (j mod k) + 1. This experiment is for 5 sites and a sample size of 10.

From Figure 5.1, we observe that at the beginning of observation, the number of messages

increases quickly, since the sample is changing often. As more elements are observed, the

probability of a change in the sample decreases and fewer messages are sent. It is clear that the

number of messages under flooding is significantly larger than the number of messages under

random or round-robin, though the total number of distinct elements seen in both inputs is

the same. This scenario is explained by our tighter upper bound 2ks
(

1 +
∑k

i=1 ln di
s

)
(see

Observation 1). Note that the number of messages for random and round-robin are so similar

that they are nearly indistinguishable in the graph; this is because the average numbers of

distinct elements received by each site are close to each other. In following graphs, we only

present the random distribution and not round-robin.

Figure 5.2 shows the number of messages as a function of the sample size; the message

complexity increases almost linearly with the sample size, though the slopes are different for

different methods of data distribution. Figure 5.3 shows the number of messages as a function

of the number of sites k. For flooding, the number of messages increases linearly with the

number of sites. However, for random distribution, the number of messages is much smaller

than in case of flooding, and is almost independent of the number of sites.

5.2 Comparison with Other Algorithms

According to our survey, there are no prior methods for distinct sampling on a distributed

stream. We compare the performance of our algorithm with a new algorithm, which we call

Algorithm “Broadcast”. The difference between Algorithm Broadcast and our proposed method

is that Algorithm Broadcast will broadcast the current value of u (which has the value of u(t)

at time t) to all sites whenever there is an update to u. This version has the advantage that

fewer messages are sent from the sites to the coordinator, since the uis are always in sync with

the coordinator. However, this has the downside of requiring a broadcast each time u changes.

www.manaraa.com

21

We set the number of sites to 100, sample size to 20, and we use the “random” method for

data distribution. The results are shown in Figure 5.4. It is clear that Broadcast requires

significantly more messages than our algorithm; this suggests that typically it is not worth

keeping the different sites synchronized with respect to the value of u. A “lazy” approach of

refreshing u when incorrect results in fewer messages.

We also note that the message cost of Algorithm Broadcast is linear in the number of sites

k, and the sample size s. However, the slope of the Broadcast algorithm is considerably higher.

We show the comparison of the two algorithms as a function of the sample size in Figure ??.

Similar results are observed with the number of sites.

We next consider the influence of the non-uniformity in the streams observed at different

sites. Here, we construct a distributed input where one site “dominates” over the other sites in

terms of the number of distinct elements that it observes. Each input element is sent to only

one site; but instead of dealing it randomly or in a round-robin fashion, we send the element

to site 1 with a probability that is a factor α times the probability that a site other than 1 is

chosen. We call this factor as the “dominate rate”. For example, if the dominate rate were

200, then site 1 is 200 times more likely to receive an element than another site. Figure 5.6

shows the relation between number of message transmissions and the dominate rate for different

algorithms. The number of messages transmitted reduces as the dominate rate increases; this

is to be expected. Note that the higher the dominate rate, the closer this gets to centralized

stream monitoring.

5.3 Sliding Windows

We derive the inputs to sliding windows from the OC48 and Enron Mail datasets as follows.

We consider timesteps numbered consecutively from 1 onwards. In each timestep, we assign 5

elements to 5 sites chosen randomly; hence, it is possible that multiple elements are observed by

the same site in the same timestep. The memory consumption and communication complexity

are recorded at each timestep, for different numbers of sites and window sizes. Each data point

is the average of 10 independent experiments.

www.manaraa.com

22

Impact of Window Size For these experiments, we have fixed the number of sites at

10. Figure 5.7 shows the average memory consumption per site as a function of the window

size. Figure 5.8 shows the total number of messages as a function of the window size.

From Figure 5.7, we note that the per site memory consumption is bounded within a region

and exceeds the region with a low probability. The memory consumption increases as the

window size increases, but the rate of increase decreases with the window size, leading to a

logarithmic dependence of the memory on the window size.

From Figure 5.8, we note that unlike the memory consumption, the communication com-

plexity decreases as the window size increases; this ie because with a larger window size, the

number of distinct elements within a window increases, and there is a lesser probability of the

distinct sample changing due to the arrival of a new element or due to an element expiring

from the window.

Impact of Number of Sites Figures 5.9 and 5.10 show the per-site memory and mes-

sages respectively when the number of sites k is varying. The window size is fixed at 100. Note

that as the number of sites is increased, fewer elements arrive at each site, leading to a lesser

memory consumption per site.

www.manaraa.com

23

(a) OC48 IP Dataset

(b) Enron Email Dataset

Figure 5.1 The number of messages under three different methods of data distribution, “flood-

ing”, “random”, and “round robin”. The curves for round-robin and random are

nearly identical, so they cannot be differentiated in this picture.

www.manaraa.com

24

(a) OC48 IP Dataset

(b) Enron Email Dataset

Figure 5.2 The number of messages as a function of the sample size s.

www.manaraa.com

25

(a) OC48 IP Dataset

(b) Enron Email Dataset

Figure 5.3 Number of messages as function of the number of sites k.

www.manaraa.com

26

(a) OC48 IP Dataset

(b) Enron Email Dataset

Figure 5.4 Comparison between number of messages sent by Algorithm Broadcast and our

proposed method.

www.manaraa.com

27

(a) OC48 IP Dataset

(b) Enron Email Dataset

Figure 5.5 The number of messages sent by Algorithm Broadcast and our proposed method

for different sample sizes.

www.manaraa.com

28

(a) OC48 IP Dataset

(b) Enron Email Dataset

Figure 5.6 Comparison between Algorithm Broadcast and our proposed method for different

dominate rates.

www.manaraa.com

29

(a) OC48 IP Dataset

(b) Enron Email Dataset

Figure 5.7 Sliding Windows: Per site memory consumption versus Window Size

www.manaraa.com

30

(a) OC48 IP Dataset

(b) Enron Email Dataset

Figure 5.8 Sliding Windows: Number of Messages versus Window Size

www.manaraa.com

31

(a) OC48 IP Dataset

(b) Enron Email Dataset

Figure 5.9 Sliding Windows: per site memory consumption as a function of number of sites

www.manaraa.com

32

(a) OC48 IP Dataset

(b) Enron Email Dataset

Figure 5.10 Sliding Windows: communication complexity as a function of number of sites

www.manaraa.com

33

CHAPTER 6. Conclusion

We present new communication-efficient methods for distinct random sampling on dis-

tributed data. Our algorithms are practical, easy to implement, and the expected message

complexity of the algorithm for infinite window is within a factor of four of the optimal.

We present an extension to sliding windows, and an experimental analysis, showing that this

method is easily extensible and provides good observed performance.

www.manaraa.com

34

BIBLIOGRAPHY

Aggarwal, C. (2006). On biased reservoir sampling in the presence of stream evolution. In

VLDB ’06, pages 607–618.

Arackaparambil, C., Brody, J., and Chakrabarti, A. (2009). Functional monitoring without

monotonicity. In ICALP ’09, pages 95–106.

Babcock, B., Datar, M., and Motwani, R. (2002). Sampling from a moving window over

streaming data. In SODA ’02, pages 633–634.

Braverman, V., Ostrovsky, R., and Zaniolo, C. (2012). Optimal sampling from sliding windows.

Journal of Computer and System Sciences, 78:260 – 272.

CAIDA OC48 Trace Project (2006). The caida ucsd oc48 internet traces dataset - (2002-2003).

CALO Project (2009). Enron email dataset.

Cormode, G. (2013). The continuous distributed monitoring model. SIGMOD ’13, 42(1):5–14.

Cormode, G., Muthukrishnan, S., and Yi, K. (2008). Algorithms for distributed functional

monitoring. In SODA ’08, pages 1076–1085.

Cormode, G., Muthukrishnan, S., and Yi, K. (2011). Algorithms for distributed functional

monitoring. ACM Trans. Algorithms, 7(2):21:1–21:20.

Cormode, G., Muthukrishnan, S., Yi, K., and Zhang, Q. (2010). Optimal sampling from

distributed streams. In PODS ’10, pages 77–86, New York, NY, USA. ACM.

Cormode, G., Muthukrishnan, S., Yi, K., and Zhang, Q. (2012). Continuous sampling from

distributed streams. J. ACM, 59(2).

www.manaraa.com

35

Datar, M., Gionis, A., Indyk, P., and Motwani, R. (2002). Maintaining stream statistics over

sliding windows. SIAM J. Comput., 31(6):1794–1813.

Efraimidis, P. and Spirakis, P. G. (2006). Weighted random sampling with a reservoir. Inf.

Process. Lett., 97(5):181–185.

Efraimidis, P. and Spirakis, P. G. (2008). Weighted random sampling. In Encyclopedia of

Algorithms.

Frahling, G., Indyk, P., and Sohler, C. (2005). Sampling in dynamic data streams and appli-

cations. In SCG ’05, pages 142–149, New York, NY, USA. ACM.

Ganguly, S., Garofalakis, M., and Rastogi, R. (2004). Tracking set-expression cardinalities over

continuous update streams. VLDB ’04, 13(4):354–369.

Gemulla, R. and Lehner, W. (2008). Sampling time-based sliding windows in bounded space.

In SIGMOD ’08, pages 379–392.

Giatrakos, N., Deligiannakis, A., Garofalakis, M. N., Sharfman, I., and Schuster, A. (2012).

Prediction-based geometric monitoring over distributed data streams. In SIGMOD ’12, pages

265–276.

Gibbons, P. B. (2001). Distinct sampling for highly-accurate answers to distinct values queries

and event reports. In VLDB ’01, pages 541–550.

Gibbons, P. B. and Tirthapura, S. (2001). Estimating simple functions on the union of data

streams. In SPAA ’01, pages 281–291.

Gibbons, P. B. and Tirthapura, S. (2002). Distributed streams algorithms for sliding windows.

In SPAA ’02, pages 63–72.

Holub, V. Murmur hash 2.0.

Lahiri, B. and Tirthapura, S. (2009). Stream sampling. In Encyclopedia of Database Systems,

pages 2838–2842.

www.manaraa.com

36

Seidel, R. and Aragon, C. R. (1996). Randomized search trees. In Algorithmica, pages 540–545.

Sharfman, I., Schuster, A., and Keren, D. (2007). A geometric approach to monitoring threshold

functions over distributed data streams. ACM Trans. Database Syst., 32(4).

Tirthapura, S. and Woodruff, D. (2011). Optimal random sampling from distributed streams

revisited. In DISC ’11, pages 283–297.

Vitter, J. S. (1985). Random sampling with a reservoir. ACM Transactions on Mathematical

Software, 11(1):37–57.

Woodruff, D. P. and Zhang, Q. (2012). Tight bounds for distributed functional monitoring. In

STOC ’12, pages 941–960.

Yi, K. and Zhang, Q. (2013). Optimal tracking of distributed heavy hitters and quantiles.

Algorithmica, 65(1):206–223.

	2013
	Distinct random sampling from a distributed stream
	Yung-Yu Chung
	Recommended Citation

	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	Introduction
	Model
	Infinite Window
	Infinite Window: Analysis

	Sliding Windows
	Algorithm
	Sliding Window Analysis

	Experiments
	Impact of Data Distribution
	Comparison with Other Algorithms
	Sliding Windows

	Conclusion
	BIBLIOGRAPHY

